Monday, June 26, 2017
Home
Main Service Categories
Find Contractors
Trust Builders
B2B tips
Visit Our Blog
Advertise With Us
Consumer Tips
Classes and Events
Consumers Join Free
Contact Us
Learn About Us
Request A Service Pro
Better Leads For You



Get quotes from up to 3 pre-screened home service professionals.

SAVE TO MY
FAVORITES

 Conduct Your Own Energy Audit

Home Energy Audit · Energy Efficient · Green Home Solutions · Ways To Save On Your Energy Bills · Minneapolils, MN

Your Home´s Energy Use

The first step to taking a whole house energy efficiency approach is to find out which parts of your house use the most energy. A home energy audit will pinpoint those areas and suggest the most effective measures for cutting your energy costs. You can conduct a simple home energy audit yourself. It’s easier than you might think.  

Home Energy Audits

During an audit, you can pinpoint where your house is losing energy. Audits also determine the efficiency of your home´s heating and cooling systems. An audit may also show you ways to conserve hot water and electricity. Performing an audit yourself can be simple.  

Do-It-Yourself Home Energy Audits

With a simple but diligent walk-through, you can spot many problems in any type of house. When auditing your home, keep a checklist of areas you have inspected and problems you found. This list will help you prioritize your energy efficiency upgrades.  Some of the items below you may find to be easy, and some more challenging.  Take on the ones you can handle.  Consider that doing something is far better than nothing.  Discovering even some ways you can conserve and save energy will no doubt help your home operate more energy effieciently, plus you will cut down on your costs in the process. 

Locating Air Leaks   
 
First, make a list of obvious air leaks (drafts). The potential energy savings from reducing drafts in a home may range from 5 to 30% per year, and the home is generally much more comfortable afterward. Check for indoor air leaks, such as gaps along the baseboard or edge of the flooring and at junctures of the walls and ceiling. Check to see if air can flow through these places:
  • Electrical outlets
  • Switch plates
  • Window frames
  • Baseboards
  • Weather stripping around doors
  • Fireplace dampers
  • Attic hatches
  • Wall- or window-mounted air conditioners.
Also look for gaps around pipes and wires, electrical outlets, foundation seals, and mail slots. Check to see if the caulking and weather stripping are applied properly, leaving no gaps or cracks, and are in good condition.  Inspect windows and doors for air leaks. See if you can rattle them, since movement means possible air leaks. If you can see daylight around a door or window frame, then the door or window leaks. You can usually seal these leaks by caulking or weather stripping them. Check the storm windows to see if they fit and are not broken. You may also wish to consider replacing your old windows and doors with newer, high-performance ones. If new factory-made doors or windows are too costly, you can install low-cost plastic sheets over the windows.  If you are having difficulty locating leaks, you may want to conduct a basic building pressurization test:
  1. First, close all exterior doors, windows, and fireplace flues.
  2. Turn off all combustion appliances such as gas burning furnaces and water heaters.
  3. Then turn on all exhaust fans (generally located in the kitchen and bathrooms) or use a large window fan to suck the air out of the rooms.
This test increases infiltration through cracks and leaks, making them easier to detect. You can use incense sticks or your damp hand to locate these leaks. If you use incense sticks, moving air will cause the smoke to waver, and if you use your damp hand, any drafts will feel cool to your hand.  On the outside of your house, inspect all areas where two different building materials meet, including:
  • All exterior corners
  • Where siding and chimneys meet
  • Areas where the foundation and the bottom of exterior brick or siding meet.
You should plug and caulk holes or penetrations for faucets, pipes, electric outlets, and wiring. Look for cracks and holes in the mortar, foundation, and siding, and seal them with the appropriate material. Check the exterior caulking around doors and windows, and see whether exterior storm doors and primary doors seal tightly.    
   
When sealing any home, you must always be aware of the danger of indoor air pollution and combustion appliance "backdrafts." Backdrafting is when the various combustion appliances and exhaust fans in the home compete for air. An exhaust fan may pull the combustion gases back into the living space. This can obviously create a very dangerous and unhealthy situation in the home.

In homes where a fuel is burned (i.e., natural gas, fuel oil, propane, or wood) for heating, be certain the appliance has an adequate air supply. Generally, one square inch of vent opening is required for each 1,000 Btu of appliance input heat. When in doubt, contact your local utility company, energy professional, or ventilation contractor.   

Insulation

Heat loss through the ceiling and walls in your home could be very large if the insulation levels are less than the recommended minimum. When your house was built, the builder likely installed the amount of insulation recommended at that time. Given today´s energy prices (and future prices that will probably be higher), the insulation level might be inadequate, especially if you have an older home.   
  
If the attic hatch is located above a conditioned space, check to see if it is at least as heavily insulated as the attic, is weather stripped, and closes tightly. In the attic, determine whether openings for items such as pipes, ductwork, and chimneys are sealed. Seal any gaps with an expanding foam caulk or some other permanent sealant.   
 
While you are inspecting the attic, check to see if there is a vapor barrier under the attic insulation. The vapor barrier might be tarpaper, Kraft paper attached to fiberglass batts, or a plastic sheet. If there does not appear to be a vapor barrier, you might consider painting the interior ceilings with vapor barrier paint. This reduces the amount of water vapor that can pass through the ceiling. Large amounts of moisture can reduce the effectiveness of insulation and promote structural damage.    
  
Make sure that the attic vents are not blocked by insulation. You also should seal any electrical boxes in the ceiling with flexible caulk (from the living room side or attic side) and cover the entire attic floor with at least the current recommended amount of insulation.  
 
Checking a wall´s insulation level is more difficult. Select an exterior wall and turn off the circuit breaker or unscrew the fuse for any outlets in the wall. Be sure to test the outlets to make certain that they are not "hot." Check the outlet by plugging in a functioning lamp or portable radio. Once you are sure your outlets are not getting any electricity, remove the cover plate from one of the outlets and gently probe into the wall with a thin, long stick or screwdriver. If you encounter a slight resistance, you have some insulation there. You could also make a small hole in a closet, behind a couch, or in some other unobtrusive place to see what, if anything, the wall cavity is filled with. Ideally, the wall cavity should be totally filled with some form of insulation material. Unfortunately, this method cannot tell you if the entire wall is insulated, or if the insulation has settled.     
   
If your basement is unheated, determine whether there is insulation under the living area flooring. In most areas of the country, an R-value of 25 is the recommended minimum level of insulation. The insulation at the top of the foundation wall and first floor perimeter should have an R-value of 19 or greater. If the basement is heated, the foundation walls should be insulated to at least R-19. Your water heater, hot water pipes, and furnace ducts should all be insulated.   
 
Heating / Cooling Equipment 
 
Inspect heating and cooling equipment annually, or as recommended by the manufacturer. If you have a forced-air furnace, check your filters and replace them as needed. Generally, you should change them about once every month or two, especially during periods of high usage. Have a professional check and clean your equipment once a year.  
    
If the unit is more than 15 years old, you should consider replacing your system with one of the newer, energy-efficient units. A new unit would greatly reduce your energy consumption, especially if the existing equipment is in poor condition. Check your ductwork for dirt streaks, especially near seams. These indicate air leaks, and they should be sealed with a duct mastic. Insulate any ducts or pipes that travel through unheated spaces. An insulation R-Value of 6 is the recommended minimum.   
  
Lighting   
 
Energy for lighting accounts for about 10% of your electric bill. Examine the wattage size of the light bulbs in your house. You may have 100-watt (or larger) bulbs where 60 or 75 watts would do. You should also consider compact fluorescent lamps for areas where lights are on for hours at a time. Your electric utility may offer rebates or other incentives for purchasing energy-efficient lamps.
 
Energy Auditing Tips
  • Check the insulation levels in your attic, exterior and basement walls, ceilings, floors, and crawl spaces.  Visit the Consumer´s Guide for instructions on checking your insulation levels.
  • Check for holes or cracks around your walls, ceilings, windows, doors, light and plumbing fixtures, switches, and electrical outlets that can leak air into or out of your home.
  • Check for open fireplace dampers.
  • Make sure your appliances and heating and cooling systems are properly maintained. Check your owner´s manuals for the recommended maintenance.
  • Study your family´s lighting needs and use patterns, paying special attention to high-use areas such as the living room, kitchen, and outside lighting. Look for ways to use lighting controls—like occupancy sensors, dimmers, or timers—to reduce lighting energy use, and replace standard (also called incandescent) light bulbs and fixtures with compact or standard fluorescent lamps.  

Formulating Your Plan

After you have identified where your home is losing energy, assign priorities by asking yourself a few important questions:
  • How much money do you spend on energy?
  • Where are your greatest energy losses?
  • How long will it take for an investment in energy efficiency to pay for itself in energy cost savings?
  • Do the energy saving measures provide additional benefits that are important to you (for example, increased comfort from installing double-paned, efficient windows)?
  • How long do you plan to own your current home?
  • Can you do the job yourself or will you need to hire a contractor?
  • What is your budget and how much time do you have to spend on maintenance and repair?
Once you assign priorities to your energy needs, you can form a whole house efficiency plan. Your plan will provide you with a strategy for making smart purchases and home improvements that maximize energy efficiency and save the most money. Another option is to get the advice of a professional. Many utilities will conduct a basic energy audit for free or for a small charge. For a fee, a professional contractor will analyze in more detail how well your home´s energy systems work together and compare the analysis to your utility bills. He or she will use a variety of equipment such as blower doors, infrared cameras, and surface thermometers to find leaks and drafts. After gathering information about your home, the contractor or auditor will give you a list of recommendations for cost-effective energy improvements and enhanced comfort and safety. A good contractor will also calculate the return on your investment in high-efficiency equipment compared with standard equipment.  If you would like a recommendation for a professional to help conduct an energy audit for your home, you can contact The Service Guide at 763-745-7490, or email us at info@theserviceguide.com.  We are happy to help.
 
Source: U.S. Department of Energy

 

© 2015 The Service Guide. 763-745-1188 | info@theserviceguide.com